首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes
Authors:Britta Wachter  Sonja Schürger  Jens Rolinger  Andreas von Ameln-Mayerhofer  Daniela Berg  Hans-Jochen Wagner  Eva Kueppers
Institution:Institute of Anatomy, Department of Cellular Neurobiology, University of Tübingen, Oesterbergstrasse 3, 72074, Tübingen, Germany.
Abstract:Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate. Progenitor cells derived from the subventricular zone (SVZ), cells positive for chondroitin sulfate proteoglycan (NG2(+)), and de-differentiated astrocytes have been proposed as the origin of proliferating cells following injury. We have analyzed the effect of intraventricular-applied 6-hydroxydopamine (6-OHDA) on the proliferation and morphology of astrocytes in rat cortex and striatum by means of immunohistochemistry and confocal laser microscopy. At 4 days post-lesion, GFAP expression increased markedly. A subpopulation of the GFAP(+) cells co-expressed Ki-67, indicating that these cells were proliferating. To investigate whether these cells (1) arose from migrating SVZ progenitor cells, (2) derived from NG2(+) progenitor cells, or (3) de-differentiated from resident astrocytes, we studied the expression of the migration marker doublecortin (Dcx), the oligodendrocyte progenitor marker NG2, and the progenitor markers Nestin and Pax6. The proliferating Ki-67(+) cells co-expressed Nestin and Pax6, whereas no co-expression of Ki-67 with NG2 or the migration marker Dcx was observed. Thus, resident astrocytes de-differentiate, in response to the intraventricular application of 6-OHDA, to a phenotype resembling radial glia cells, which represent transient astrocyte precursors during development. An understanding of the mechanisms of the de-differentiation of mature astrocytes might be useful for designing new approaches to cell therapy in neurodegenerative diseases such as Parkinson's disease.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号