首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding Rather Than Metabolism May Explain the Interaction of Two Food-Grade Lactobacillus Strains with Zearalenone and Its Derivative ά-Zearalenol
Authors:Hani El-Nezami  Nektaria Polychronaki  Seppo Salminen  and Hannu Mykknen
Institution:Hani El-Nezami, Nektaria Polychronaki, Seppo Salminen, and Hannu Mykkänen
Abstract:The interaction between two Fusarium mycotoxins, zearalenone (ZEN) and its derivative ¯α-zearalenol (¯α-ZOL), with two food-grade strains of Lactobacillus was investigated. The mycotoxins (2 μg ml−1) were incubated with either Lactobacillus rhamnosus strain GG or L. rhamnosus strain LC705. A considerable proportion (38 to 46%) of both toxins was recovered from the bacterial pellet, and no degradation products of ZEN and ¯α-ZOL were detected in the high-performance liquid chromatograms of the supernatant of the culturing media and the methanol extract of the pellet. Both heat-treated and acid-treated bacteria were capable of removing the toxins, indicating that binding, not metabolism, is the mechanism by which the toxins are removed from the media. Binding of ZEN or ¯α-ZOL by lyophilized L. rhamnosus GG and L. rhamnosus LC705 was a rapid reaction: approximately 55% of the toxins were bound instantly after mixing with the bacteria. Binding was dependent on the bacterial concentration, and coincubation of ZEN with ¯α-ZOL significantly affected the percentage of the toxin bound, indicating that these toxins may share the same binding site on the bacterial surface. These results can be exploited in developing a new approach for detoxification of mycotoxins from foods and feeds.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号