首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stoichiometry of the renal sodium-L-lactate cotransporter
Authors:B Barbarat  R A Podevin
Institution:Department of Physiology, Faculté de Médecine Xavier Bichat, Paris, France.
Abstract:We re-examined the electrical and stoichiometric properties of the Na+-L-lactate cotransporter using highly purified brush-border membrane vesicles prepared from the whole cortex of rabbit kidney. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated Na+ gradient-dependent L-lactate uptake. However, this stimulation reflected catalytic rather than energetic activation as an inside-negative membrane potential did not induce net uphill lactate accumulation in the presence of Na+ but in the absence of a Na+ concentration gradient. Additional evidence for electroneutrality of the cotransporter was the finding that, under voltage-clamped conditions, L-lactate flux was a hyperbolic function of extravesicular Na+ concentration with a Hill coefficient (n) of 1.0. Moreover, the plot of V/Na+]n versus V was linear for n = 1, indicating that one Na+ ion is co-transported with an anionic lactate1- molecule. Finally, addition of L-lactate to vesicles under Na+ equilibrium conditions failed to generate an inside-positive membrane potential as monitored by 3,3'-dipropylthiodicarbocyanine iodide fluorescence quenching, arguing against Na+-L-lactate cotransport by an electrogenic process. Taken together, these data indicate that the luminal Na+-L-lactate co-transporter is electroneutral with a stoichiometry of 1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号