首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize
Authors:Hamada AbdElgawad  Viktoriya Avramova  Geert Baggerman  Geert Van Raemdonck  Dirk Valkenborg  Xaveer Van Ostade  Yves Guisez  Els Prinsen  Han Asard  Wim Van den Ende  Gerrit T S Beemster
Institution:1. Research group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium;2. Applied Bio & molecular Systems, VITO, Mol, Belgium;3. Center for Proteomics, University of Antwerp, Antwerp, Belgium;4. Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium;5. Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
Abstract:To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery.
Keywords:drought  leaf growth  maize  photosynthesis  proteomics  sh2 mutant  starch
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号