首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cellular alteration and differential protein profile explain effects of GA3 and ABA and their inhibitor on Trichocline catharinensis (Asteraceae) seed germination
Authors:Ana P Lando  Willian G Viana  Ellen M Vale  Marisa Santos  Vanildo Silveira  Neusa Steiner
Institution:1. Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900 Brazil;2. Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602 Brazil

Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602 Brazil

Abstract:Seed physiology of wild species has not been studied as deeply as that of domesticated crop species. Trichocline catharinensis (Asteraceae) is an endemic wildflower species from the high-altitude fields of southern Brazil. This species is of interest as a source of genes to improve cultivated Asteraceae because of its ornamental features, disease resistance and ability to tolerate drought and poor soil conditions. We studied the effects of abscisic acid (ABA) and gibberellic acid (GA3) and their inhibitors, fluridone (FLU) and paclobutrazol (PAC), on seed germination. We individually assessed ultrastructural changes and differential protein accumulation. The principal component analysis explained 69.66% of differential accumulation for 32 proteins at phase II of seed germination in response to hormone and inhibitor treatment. GA3-imbibed seed germination (98.75%) resulted in increased protein accumulation to meet energy demand, redox regulation, and reserve metabolism activation. FLU-imbibed seeds showed a higher germination speed index as a consequence of metabolism activation. ABA-imbibed seeds (58.75%) showed osmotolerance and flattened cells in the hypocotyl-radicular axis, suggesting that ABA inhibits cell expansion. PAC-imbibed seeds remained at phase II for 300 h, and germination was suppressed (7.5%) because of the increased signaling proteins and halted reserve mobilization. Therefore, our findings provide insight into the behavior of Asteraceae non-dormant seed germination, which broadens our knowledge of seed germination in a wild and endemic plant species from a threatened ecosystem.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号