首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Renal function and urinary prostanoid excretions in salt-depleted women: comparative effects of enalapril and indomethacin treatments.
Authors:G C Agnoli  R Borgatti  M Cacciari  P Lenzi  M Marinelli  L Stipo
Institution:Dipartimento di Medicina Interna, Cardioangiologia, Epatologia, Università di Bologna, Italy.
Abstract:The acute effects on urinary prostanoid excretion and on renal function induced by pharmacological inhibition of either the angiotensin-converting enzyme or of the cyclooxygenase system, respectively, have been studied in healthy salt-depleted women. Two experimental groups were studied during salt depletion, SD1 (n=8) and SD2 (n=6). Salt depletion was obtained by combining a low sodium chloride dietary intake (< or =60 mmol per day) with natriuretic and potassium sparing treatment. Paired studies were performed in the absence and in the presence of enalapril (SD1 group) or indomethacin (SD2 group). In both paired studies renal function was estimated by the clearance (cl.) method and the urinary concentrations of PGE2, 6-keto-PGF1alpha and TXB2 were estimated by RIA during sustained hypotonic polyuria (induced by oral water load). Enalapril did not influence urinary excretion of prostanoids. Its main significant effects were: (a) a reduction in mean arterial pressure (MAP); (b) an increase in free-water cl. (C(H2O)) and a reduction in osmolar cl. (Cosm); (c) a reduction in the absolute and fractional urinary excretions of sodium and chloride; and (d) a reduction in both the plasma concentration and urinary excretion of potassium. The urinary flow rate and the creatinine cl. were not significantly affected. Indomethacin reduced urinary excretion of prostanoids and in addition it produced the following significant effects: (a) a reduction in urinary flow rate, C(H2O) and Cosm values, and in absolute and fractional urinary excretions of sodium and chloride; and (b) an increase in plasma potassium concentration. MAP, creatinine cl. and urinary potassium excretion were not significantly affected. With regard to the main parameters, both enalapril and indomethacin exerted similar effects on urinary sodium and chloride excretion but opposite effects on C(H2O) and plasma potassium concentration. In conclusion, after enalapril in a salt-depleted state, the functional expression of acute angiotensin II deprivation was partially masked by the activation of a homeostatic system responsible both for improvement in renal salt conservation and for facilitated cellular potassium uptake. After indomethacin in the same setting, the results were consistent with a differential role of prostanoids in modulating or mediating the activities of neuro-hormonal agonists.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号