首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hyperpolarization-activated inward current associated with the frequency increase in ciliary beating of Paramecium
Authors:Yasuo Nakaoka  Kenji Iwatsuki
Institution:(1) Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, 560 Osaka, Japan;(2) Tsukuba Life Science Laboratory, Nippon Petrochemicals Co. Ltd., Tokodai, Tsukuba, 300-26 Ibaraki, Japan
Abstract:Summary In order to study the relationship between the inward Ca current activated by hyperpolarization and the frequency increase in ciliary beating, Paramecium cells were voltage clamped under conditions where K current was suppressed by use of CsCl electrodes and by extracellular tetraethyl ammonium. A 2-s pulse of hyperpolarization from the resting potential activated an inward current consisting of two components, an initial transient current peaking at 0.1–0.2 s (which had been identified as a Ca current) and a subsequent sustained current. The initial component was not associated with the frequency increase because the frequency increase was normally induced even when the peak current was almost completely inhibited by external addition of Ba2+. The second sustained current was closely correlated with the frequency increase. The frequency rose steeply with the sustained current and saturated at –0.6 nA. External addition of La3+ or replacement of Ca2+ by Mg2+ suppressed this current, and at the same time the frequency increase was inhibited. As the amplitude of the sustained current was not changed by deciliation, this current must pass through the somatic membrane. These results suggest that the frequency increase upon hyperpolarization is triggered by the voltage-activated inward current passing through the somatic membrane of the interciliary compartment.Abbreviations cAMP cyclic adenosine monophosphate - HEPES hydroxyethylpiperazine ethanesulfonate - TEA+ tetraethyl ammonium
Keywords:Ciliary beating  Hyperpolarization  Inward current  Ca2+
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号