首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization and applications of CataCleave probe in real-time detection assays
Authors:Harvey John J  Lee S Paul  Chan Edward K  Kim Jung H  Hwang Eung-Soo  Cha Chang-Yong  Knutson Jay R  Han Myun K
Institution:Excimus Biotech, Inc., Baltimore, MD 21202, USA.
Abstract:Cycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores. Fluorescence intensity of the probe itself was weak due to F?rster resonance energy transfer. Cleavage of the probe by RNase H in the presence of its target DNA caused enhancement of donor fluorescence, but this was not observed with nonspecific target DNA. Further, RNase H reactions with CataCleave probe exhibit a catalytic dose-dependent response to target DNA. This confirms the capability for the direct detection of specific target DNA through a signal amplification process. Moreover, CataCleave probe is also ideal for detecting DNA amplification processes, such as polymerase chain reaction (PCR) and isothermal rolling circle amplification (RCA). In fact, we observed signal enhancement proportional to the amount of RCA product formed. We were also able to monitor real-time PCR by measuring enhancement of donor fluorescence. Hence, CataCleave probe is useful for real-time monitoring of both isothermal and temperature-cycling nucleic acid amplification methods.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号