首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nonhydraulic signalling of soil drying in mycorrhizal maize
Authors:Robert M Augé  Xiangrong Duan  Robert C Ebel  Ann J W Stodola
Institution:(1) Institute of Agriculture, University of Tennessee, P.O. Box 1071, 37910-1071 Knoxville, TN, USA
Abstract:Our objectives were to (1) verify that nonhydraulic signalling of soil drying can reduce leaf growth of maize, (2) determine if a mycorrhizal influence on such signalling can occur independently of a mycorrhizal effect on leaf phosphorus concentration, plant size or soil drying rate, and (3) determine if leaf phosphorus concentration can affect response to the signalling process. Maize (Zea mays L. lsquoPioneer 3147rsquo) seedlings were grown in a glasshouse with root systems split between two pots. The 2 x 3 x 2 experimental design included two levels of mycorrhizal colonization (presence or absence of Glomus intraradices Schenck & Smith), three levels of phosphorus fertilization within each mycorrhizal treatment and two levels of water (both pots watered or one pot watered, one pot allowed to dry). Fully watered mycorrhizal and nonmycorrhizal control plants had similar total leaf lengths throughout the experiment, and similar final shoot dry weights, root dry weights and leaf length/root dry weight ratios. Leaf growth of mycorrhizal plants was not affected by partial soil drying, but final plant leaf length and shoot dry weight were reduced in half-dried nonmycorrhizal plants. At low P fertilization, effects of nonhydraulic signalling were not evident. At medium and high P fertilization, final total plant leaf length of nonmycorrhizal plants was reduced by 9% and 10%, respectively. These growth reductions preceded restriction of stomatal conductance by 7 d. This and the fact that leaf water potentials were unaffected by partial soil drying suggested that leaf growth reductions were nonhydraulically induced. Stomatal conductance of plants given low phosphorus was less influenced by nonhydraulic signalling of soil drying than plants given higher phosphorus. Soil drying was not affected by mycorrhizal colonization, and reductions in leaf growth were not related to soil drying rate (characterized by time required for soil matric potential to drop below control levels and by time roots were exposed to soil matric potential below typical leaf water potential). We conclude that mycorrhizal symbiosis acted independently of phosphorus nutrition, plant size or soil drying rate in eliminating leaf growth response to nonhydraulic root-to-shoot communication of soil drying.Abbreviations and Symbols ANOVA analysis of variance - Cs stomatal conductance(s) - med medium - P probability - PSgrtau matric potential(s) - PSgr water potential(s) This work was supported by the U.S. Department of Agriculture grant No. 91-37100-6723 and a University of Tennessee Professional Development Research Award to R.M.A. We thank Angela Berry for the graphics.
Keywords:Drought stress  Mycorrhizal symbiosis  Nonhydraulic root-to-shoot communication  Phosphorus nutrition  Stomatal conductance  Zea (leaf growth  nonhydraulic signalling)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号