首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanoreception in marine copepods: electrophysiological studies on the first antennae
Authors:Yen  Jeannette; Lenz  Petra H; Gassie  Donald V; Hartline  Daniel K
Institution:Hawaii Institute of Geophysics, University of Hawaii Honolulu, HI 96822, USA 1Present address: Marine Sciences Research Center, State University of New York Stony Brook, NY 11794-5000, USA 2Békésy Laboratory of Neurobiology, PBRC 1993 East-West Rd, Honolulu, HI 96822, USA
Abstract:Neural activity was recorded extracellularly at the base ofthe first antenna in 15 marine copepods. Controlled mechanicalstimuli were delivered with a vibrator driven by a waveformgenerator. Many species exhibited responses characterized bya large number of small spikes, while others were characterizedby the presence of a small number of large units. Two bay species,Labidocera madurae and Acartia fossae, exhibited large unitsthat could be easily distinguished from the background activityof smaller units. In these species, the antennal receptors firedshort latency (>5 ms) trains of one to several impulses inresponse to a brief mechanical stimulus and sustained trainsto a prolonged sinusoidal stimulus. They were extremely sensitiveto small displacements and sensitivity increased with stimulusfrequency. The receptors responded to stimuli between 40 and1000 Hz and receptors required displacement velocities of 20µm s–1 or more to fire. Displacements as small as10 nm were capable of triggering spikes. With an increase inthe amplitude of the displacement, a decrease in the latencyand an increase in the number of units recruited and/or firingfrequency was recorded. Phase-locking to oscillatory stimuliwas observed over a frequency range of 80–500 Hz. Neuralactivity increased in response to bending of individual setae.Setae appear innervated and structurally constrained to movementsin specific directions. These experiments suggest that (i) somecopepod setal receptors may be more nearly velocity detectorsthan purely displacement sensors, (ii) they may be capable ofsensing closely spaced stimuli, (iii) the patterns of responsemay code for intensity and duration of the stimulus, and (iv)receptors may be capable of supplying directional information.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号