Output of [14C]adenine nucleotides and their derivatives from cerebral tissues. Tetrodotoxine-resistant and calcium ion-requiring components |
| |
Authors: | Ian Pull and Henry McIlwain |
| |
Affiliation: | Department of Biochemistry, Institute of Psychiatry (British Postgraduate Medical Federation, University of London), De Crespigny Park, London SE5 8AF, U.K. |
| |
Abstract: | 1. Neocortical tissues, exposed briefly to [(14)C]adenine and containing over 98% of their (14)C as adenine nucleotides, when superfused with glucose-bicarbonate salines released about 0.1% of their (14)C content/min to the superfusate. 2. Addition of unlabelled adenosine to the superfusing fluid increased the (14)C output three- to four-fold; half-maximal increase was given by about 40mum-adenosine, and reasons are adduced for considering the activity of adenosine kinase to be a major factor in conditioning the (14)C output. Adenosine similarly increased the enhanced (14)C output caused by electrical excitation of the superfused tissue; it brought about only a small increase in tissue glycolysis. 3. Output of (14)C from the [(14)C]adenine-labelled tissues was increased when Ca(2+) was omitted from the superfusing fluids, but electrical stimulation did not then liberate more (14)C. Nevertheless, such tissues still responded to electrical stimulation by increased glycolysis, and their (14)C output again became susceptible to increase by electrical stimulation when Ca(2+) was restored. 4. The six-fold increase in tissue glycolysis caused by electrical excitation was almost completely inhibited by tetrodotoxin at 0.1mum and above, but this was associated with about 50% inhibition only in the output of (14)C from tissues preincubated with [(14)C]adenine. The (14)C-labelled compounds of which output was most inhibited by tetrodotoxin were adenosine, inosine and hypoxanthine whereas output in a nucleotide fraction was little affected. |
| |
Keywords: | |
|
|