首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinematic chain reactions on trunk and dynamic postural steadiness in subjects with recurrent low back pain
Institution:1. Department of Orthopedic Surgery and Trauma Surgery, University of Heidelberg, Heidelberg, Germany;2. Axe Robotique, Biomécanique Sport Santé, Institut PPRIME, UPR3346 CNRS Université de Poitiers ENSMA, SP2MI, Téléport 2,Bd Pierre et Marie Curie, Futuroscope, 86360 Chasseneuil du Poitou, France;3. Department of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
Abstract:Although subjects with recurrent low back pain (LBP) demonstrate altered trunk control, the kinematic and kinetic responses of the trunk have not been carefully investigated. This study was conducted to compare the standing time, spine range of motion (ROM), and dynamic postural steadiness index (DPSI) based on visual condition between subjects with and without recurrent LBP during upright one leg standing. Sixty-three individuals participated in the study, including 34 control subjects and 29 subjects with recurrent LBP. The DPSI was a composite of the medio-lateral (MLSI), anterior-posterior (APSI), and vertical steadiness indices (VSI) on a force platform. The control group demonstrated longer standing time (s) during the eyes-open condition than the LBP group (26.82 ± 6.03 vs. 19.87 ± 9.36; t = 2.96, p = 0.01). Regarding spine ROM, visual condition was significantly different between groups (F = 7.09, p = 0.01) and demonstrated interactions with spine region and group (F = 5.53, p = 0.02). For the kinetic measures, there was a significant interaction between visual conditions and indices (F = 25.30, p = 0.001). In the LBP group, the DPSI was significantly correlated with the MLSI (r = 0.59, p = 0.002), APSI (r = 0.44, p = 0.03), and VSI (r = 0.98, p = 0.01) in the eyes-closed condition. Overall, the results of this study indicated that the LBP group decreased thorax and lumbar spine rotations during the eyes-closed condition. The LBP group also demonstrated positive correlations with the kinetic indices, enhancing dynamic postural steadiness in the eyes-closed condition in order to possibly avoid pain or further injury. This dynamic postural steadiness strategy is necessary to improve kinetic and kinematic chain reactions in the LBP group. This compensatory pattern supports the development of optimal postural correction strategies to prevent LBP recurrence and might represent a chain reaction to protect trunk control without visual input.
Keywords:Postural control  Low back pain  One-leg standing  Kinetic  Kinematic chain  Postural steadiness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号