首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex differences in leg dexterity are not present in elite athletes
Institution:1. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA;2. PERCRO Laboratory, TeCIP Institute, Scuola Superiore Sant’Anna, via Alamanni 13b, 56010 Ghezzano, San Giuliano Terme, Pisa, Italy;3. Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA;1. Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands;2. Department of Orthopedic Surgery, State University of New York, Upstate Medical University, Syracuse, NY, USA;3. University of Twente, Laboratory for Biomechanical Engineering, Faculty of Engineering Technology, Enschede, The Netherlands;1. Department of Mechanical & Industrial Engineering, Montana State University, United States;2. Department of Cell Biology & Neurosciences, Montana State University, United States;3. Department of Orthopaedics & Sports Medicine, University of Washington, United States;1. Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France;2. Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622 Lyon, France;3. Service de Radiologie, Centre Hospitalier Lyon Sud, Pierre-Bénite, France;4. Service de chirurgie orthopédique et traumatologique – Hôpital d''instruction des armées Desgenettes, 69003 Lyon, France;1. Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;2. Division of Dental Informatics, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
Abstract:We studied whether the time-varying forces that control unstable foot–ground interactions provide insight into the neural control of dynamic leg function. Twenty elite (10 F, 26.4 ± 3.5 yrs) and 20 recreational (10 F, 24.8 ± 2.4 yrs) athletes used an isolated leg to maximally compress a slender spring designed to buckle at low forces while seated. The foot forces during the compression at the edge of instability quantify the maximal sensorimotor ability to control dynamic foot–ground interactions. Using the nonlinear analysis technique of attractor reconstruction, we characterized the spatial (interquartile range IQR) and geometric (trajectory length TL, volume V, and sum of edge lengths SE) features of the dynamical behavior of those force time series. ANOVA confirmed the already published effect of sex, and a new effect of athletic ability, respectively, in TL (p = 0.014 and p < 0.001), IQR (p = 0.008 and p < 0.001), V (p = 0.034 and p = 0.002), and SE (p = 0.033 and p < 0.001). Further analysis revealed that, for recreational athletes, females exhibited weaker corrective actions and greater stochasticity than males as per their greater mean values of TL (p = 0.003), IQR (p = 0.018), V (p = 0.017), and SE (p = 0.025). Importantly, sex differences disappeared in elite athletes. These results provide an empirical link between sex, athletic ability, and nonlinear dynamical control. This is a first step in understanding the sensorimotor mechanisms for control of unstable foot–ground interactions. Given that females suffer a greater incidence of non-contact knee ligament injuries, these non-invasive and practical metrics of leg dexterity may be both indicators of athletic ability, and predictors of risk of injury.
Keywords:Sensorimotor function  Attractor reconstruction  Dexterity  Sex differences  Athletic ability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号