首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aging leads to inferior Achilles tendon mechanics and altered ankle function in rodents
Institution:1. University of Maryland Baltimore School of Medicine, Department of Neurology, 110 S. Paca St, Baltimore, MD 21202, USA;2. IRCCS Fondazione Don Carlo Gnocchi ONLUS, Biomedical Technology Department, via Capecelatro 66, 20148 Milano, Italy;3. Politecnico di Milano, Department of Electronics, Information and Bioengineering, via Golgi 39, 20133 Milano, Italy;1. Department of Oral Cell Biology and Functional Anatomy, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands;2. MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands;3. Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium;4. Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands;1. INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France;2. Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris, France;3. Medical R&D, WBL Healthcare, Air Liquide Santé International, 1 Chemin de la Porte des Loges, 78350 Les Loges-en-Josas, France;4. Department of Mechanical Engineering, Lafayette College, Easton, PA 18042, USA
Abstract:Spontaneous rupture of the Achilles tendon is increasingly common in the middle aged population. However, the cause for the particularly high incidence of injury in this age group is not well understood. Therefore, the objective of this study was to identify age-specific differences in the Achilles tendon-muscle complex using an animal model. Functional measures were performed in vivo and tissues were harvested following euthanasia for mechanical, structural, and histological analysis from young, middle aged, and old rats. Numerous alterations in tendon properties were detected across age groups, including inferior material properties (maximum stress, modulus) with increasing age. Differences in function were also observed, as older animals exhibited increased ankle joint passive stiffness and decreased propulsion force during locomotion. Macroscale differences in tendon organization were not observed, although cell density and nuclear shape did vary between age groups. Muscle fiber size and type distribution were not notably affected by age, indicating that other factors may be more responsible for age-specific Achilles tendon rupture rates. This study improves our understanding of the role of aging in Achilles tendon biomechanics and ankle function, and helps provide a potential explanation for the disparate incidence of Achilles tendon ruptures in varying age groups.
Keywords:Biomechanics  Injury  Fatigue  Skeletal muscle  Elasticity  Orthopaedics  Age
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号