首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of adaptive walks on uncorrelated landscapes under strong selection and weak mutation
Authors:Rokyta Darin R  Beisel Craig J  Joyce Paul
Affiliation:Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA. rokyta@uidaho.edu
Abstract:We examine properties of adaptive walks on uncorrelated (i.e. random) fitness landscapes starting from moderately fit genotypes under strong selection weak mutation. As an extension of Orr's model for a single step in an adaptive walk under these conditions, we show that the fitness rank of the dominant genotype in a population after the fixation of a beneficial mutation is, on average, (i+6)/4, where i is the fitness rank of the starting genotype. This accounts for the change in rank due to acquiring a new set of single-mutation neighbors after fixing a new allele through natural selection. Under this scenario, adaptive walks can be modeled as a simple Markov chain on the space of possible fitness ranks with an absorbing state at i = 1, from which no beneficial mutations are accessible. We find that these walks are typically short and are often completed in a single step when starting from a moderately fit genotype. As in Orr's original model, these results are insensitive to both the distribution of fitness effects and most biological details of the system under consideration.
Keywords:Mutational landscape   Extreme value theory   Adaptive walk   Adaptive evolution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号