Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre |
| |
Authors: | J Thompson E Cundliffe A E Dahlberg |
| |
Affiliation: | Department of Biochemistry, University of Leicester, England. |
| |
Abstract: | Site-directed mutagenesis has been used to change, specifically, residue 1067 within 23 S ribosomal RNA of Escherichia coli. This nucleoside (adenosine in the wild-type sequence) lies within the GTPase centre of the larger ribosomal subunit and is normally the target for the methylase enzyme responsible for resistance to the antibiotic thiostrepton. The performance of the altered ribosomes was not impaired in cell-free protein synthesis nor in GTP hydrolysis assays (although the 3 mutant strains grew somewhat more slowly than wild-type) but their responses to thiostrepton did vary. Thus, ribosomes containing the A to C or A to U substitution at residue 1067 of 23 S rRNA were highly resistant to the drug, whereas the A to G substitution resulted in much lesser impairment of thiostrepton binding and the ribosomes remained substantially sensitive to the antibiotic. These data reinforce the hypothesis that thiostrepton binds to 23 S rRNA at a site that includes residue A1067. They also exclude any possibility that the insensitivity of eukaryotic ribosomes to the drug might be due solely to the substitution of G at the equivalent position within eukaryotic rRNA. |
| |
Keywords: | |
|
|