首页 | 本学科首页   官方微博 | 高级检索  
     


Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells
Authors:Susan C Burleigh  Teun van de Laar  Corné JM Stroop  Wout MJ van Grunsven  Niaobh O’Donoghue  Pauline M Rudd  Gavin P Davey
Affiliation:1. Embrapa Soybean, Londrina, Paraná, Brazil, Rodovia Carlos Strass, Distrito da Warta, C.P.: 6001; 86001-970, Londrina, PR, Brasil
2. Rothamsted Research, Harpenden, Hertfordshire, AL5 2 JQ, UK
3. Lancaster Environment Centre, Lancaster University, Biological Sciences, Lancaster, LA1 4YQ, UK
Abstract:

Background

The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.

Results

When grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.

Conclusions

Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号