首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of ethylene glycol in Escherichia coli
Authors:Huaiwei Liu  Kristine Rose M Ramos  Kris Niño G Valdehuesa  Grace M Nisola  Won-Keun Lee  Wook-Jin Chung
Institution:1. Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST), Myongji University, Room 8807, Engineering College Building 2, San 38-2, Namdong, Cheoin-gu, Yongin, Gyeonggi, 449-728, South Korea
2. Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi, 449-728, South Korea
Abstract:Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from d-xylose is reported. This route consists of four steps: d-xylose?→?d-xylonate?→?2-dehydro-3-deoxy-d-pentonate?→?glycoaldehyde?→?EG. Respective enzymes, d-xylose dehydrogenase, d-xylonate dehydratase, 2-dehydro-3-deoxy-d-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the d-xylose?→?d-xylulose reaction was prevented by disrupting the d-xylose isomerase gene. The most efficient construct produced 11.7 g?L?1 of EG from 40.0 g?L?1 of d-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde?→?glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to d-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号