首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distinct Mycobacterium marinum phosphatases determine pathogen vacuole phosphoinositide pattern,phagosome maturation,and escape to the cytosol
Authors:Hendrik Koliwer‐Brandl  Paulina Knobloch  Caroline Barisch  Amanda Welin  Nabil Hanna  Thierry Soldati  Hubert Hilbi
Abstract:The causative agent of tuberculosis, Mycobacterium tuberculosis, and its close relative Mycobacterium marinum manipulate phagocytic host cells, thereby creating a replication‐permissive compartment termed the Mycobacterium‐containing vacuole (MCV). The phosphoinositide (PI) lipid pattern is a crucial determinant of MCV formation and is targeted by mycobacterial PI phosphatases. In this study, we establish an efficient phage transduction protocol to construct defined Mmarinum deletion mutants lacking one or three phosphatases, PtpA, PtpB, and/or SapM. These strains were defective for intracellular replication in macrophages and amoebae, and the growth defect was complemented by the corresponding plasmid‐borne genes. Fluorescence microscopy of Mmarinum‐infected Dictyostelium discoideum revealed that MCVs harbouring mycobacteria lacking PtpA, SapM, or all three phosphatases accumulate significantly more phosphatidylinositol‐3‐phosphate (PtdIns3P) compared with MCVs containing the parental strain. Moreover, PtpA reduced MCV acidification by blocking the recruitment of the V‐ATPase, and all three phosphatases promoted bacterial escape from the pathogen vacuole to the cytoplasm. In summary, the secreted Mmarinum phosphatases PtpA, PtpB, and SapM determine the MCV PI pattern, compartment acidification, and phagosomal escape.
Keywords:Acanthamoeba  amoeba  bacterial pathogenesis  Dictyostelium  macrophage  Mycobacterium  pathogen vacuole  phagosome  phosphoinositide lipid  tuberculosis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号