首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis
Authors:Porat Iris  Sieprawska-Lupa Magdalena  Teng Quincy  Bohanon Fredrick J  White Robert H  Whitman William B
Affiliation:Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
Abstract:Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号