Abstract: | Bartonella spp. can cause persistent bloodstream infections in humans and animals. To determine whether Bartonella henselae is present in questing Ixodes ricinus ticks, we analyzed the prevalence of B. henselae DNA among tick stages compared to the prevalence of DNA from Borrelia burgdorferi sensu lato, the pathogen most frequently transmitted by ticks. B. henselae DNA was present with a prevalence of up to ∼40% in tick populations sampled in four European sites (Eberdingen, Germany; Klasdorf, Germany; Lembach, France; and Madeira, Portugal). The odds of detecting B. henselae DNA in nymphal ticks was ∼14-fold higher than in adult ticks. No tick was found to be coinfected with B. henselae and B. burgdorferi sensu lato. Taken together, our data indicate that ticks might serve as a vector for the transmission of B. henselae to humans.In immunocompetent patients, Bartonella henselae infections often result in cat scratch disease (CSD), a self-limiting but often prolonged lymphadenitis; immunocompromised patients (e.g., AIDS patients) can suffer from vasculoproliferative disorders (bacillary angiomatosis, peliosis hepatis [1]). Cats are a confirmed reservoir host of B. henselae transmitting the pathogen by cat scratches or bites.Several Bartonella species (e.g., B. henselae, B. quintana, and B. vinsonii) cause a persistent intraerythrocytic bacteremia in their respective mammalian reservoir hosts (7). B. henselae was detected in the peripheral blood of a wide range of mammals including domestic (e.g., cats, dogs, and horses) and wild animals (e.g., porpoise, lions, cheetahs, and wild felids). Obviously, such an asymptomatic, persistent bacteremia with B. henselae represents an important factor for the spread of the pathogens via blood-sucking arthropods. Mechanistic details determining the intraerythrocytic presence of Bartonella spp. have been investigated in detail in a B. tribocorum rat infection model mimicking Trench fever (a human disease caused by B. quintana); here, the pathogen persists several weeks in the circulating blood in an immunoprivileged intraerythrocytic niche (28).Cat fleas are well established vectors for B. henselae (1). However, transmission by other arthropods, in particular ticks, has been suggested: B. henselae DNA was detected in questing Ixodes pacificus and I. persulcatus ticks in North America, Eastern Europe, and Russia, respectively (4, 13, 14, 22, 25) and in I. ricinus ticks feeding on people or domestic animals in Central Europe (24, 26). DNA of various Bartonella spp. has also been detected in keds, biting flies, and mites (reviewed in reference 2). Recently, ticks (I. ricinus) were experimentally infected with B. henselae. Inoculation of cats with salivary glands of infected ticks resulted in a B. henselae bacteremia (5). Nevertheless, controversial data about the prevalence of Bartonella spp. in ticks and their role as vectors for B. henselae exist (29).Here, we present data on the prevalence of B. henselae and Lyme disease spirochetes in 654 questing ticks (I. ricinus) collected at four locations in Europe, suggesting that ticks might serve as potential vectors for the transmission of B. henselae to humans. |