首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of ethinyl estradiol on intestinal membrane structure and function in the rabbit
Authors:S M Schwarz  J B Watkins  S C Ling  J C Fayer  M Mone
Abstract:Structural and functional properties of the small intestinal microvillus membrane were evaluated in the rabbit after administration of ethinyl estradiol, a synthetic estrogen with a demonstrated propensity to alter hepatic membrane lipid fluidity, and promote cholestasis. In the jejunum, no estrogen-induced changes in microvillus membrane total lipid, cholesterol or phospholipid content were observed. However, the ileal microvillus membrane in estradiol-treated animals demonstrates significant reductions vs. controls (per mg protein) in total lipid (0.55 milligrams vs. 0.89 milligrams) corrected] and phospholipid (206.7 micrograms vs. 304.91 micrograms) (p less than 0.001) content, as well as modifications in specific phospholipid species. The increase in the ileal microvillus membrane cholesterol: phospholipid molar ratio (0.65 vs. 0.51, p less than 0.05) was associated with a significant decrease in membrane lipid fluidity reflected by an increase in fluorescence anisotropy measurements utilizing diphenyl hexatriene as the fluorophore (r at 25 degrees C = 0.306 vs. 0.282, p less than 0.05). Thermotropic lipid phase transitions, assessed by Arrhenius plots of both fluorescence data and ileal microvillus membrane p-nitrophenylphosphatase activity demonstrate that phase changes occur between and 24 and 28 degrees C in both treated and untreated groups. Within the temperature range studied (40-10 degrees C) no differences from control were observed in microvillus membrane alkaline phosphatase activity following estrogen treatment. These data therefore indicate that ethinyl estradiol-induced effects on microvillus membrane lipid composition and physical properties occur predominantly in the ileum and appear to be related, in part, to specific alterations in the availability of phospholipid following estrogen treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号