首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism-based inactivation of monoamine oxidases A and B by tetrahydropyridines and dihydropyridines.
Authors:M J Krueger  K McKeown  R R Ramsay  S K Youngster  and T P Singer
Institution:Department of Biochemistry and Biophysics, University of California, San Francisco 94143.
Abstract:1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its primary oxidation product, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), are mechanism-based inhibitors of monoamine oxidases A and B. The pseudo-first-order rate constants for inactivation were determined for various analogues of MPTP and MPDP+ and the concentrations in all redox states were measured throughout the reaction. Disproportionation was observed for all the dihydropyridiniums, but non-enzymic oxidation was insignificant. The dihydropyridiniums were poor substrates for monoamine oxidase A and, consequently, inactivated the enzyme only slowly, despite partition coefficients lower than those for the tetrahydropyridines. For monoamine oxidase B, the dihydropyridiniums were more effective inactivators than the tetrahydropyridines. Substitutions in the aromatic ring had no major effect on the inactivation of monoamine oxidase B, but the 2'-ethyl- and 3'-chloro-substituted compounds were very poor mechanism-based inactivators of monoamine oxidase A. It is clear that both oxidation steps can generate the reactive species responsible for inactivation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号