首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population.
Authors:Zhuping Yang  Jeannie Gilbert  George Fedak  Daryl J Somers
Affiliation:Agriculture and Agri-Food Canada, Cereal Research Centre, Winnipeg.
Abstract:Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is the key to facilitating the introgression of different FHB resistance genes into adapted wheat. The objectives of the present study were to detect and map quantitative trait loci (QTL) associated with FHB resistance genes and characterize the genetic components of the QTL in a doubled-haploid (DH) spring wheat population using both single-locus and two-locus analysis. A mapping population, consisting of 174 DH lines from the cross between DH181 (resistant) and AC Foremost (susceptible), was evaluated for type I resistance to initial infection during a 2-year period in spray-inoculated field trials, for Type II resistance to fungal spread within the spike in 3 greenhouse experiments using single-floret inoculation, and for resistance to kernel infection in a 2001 field trial. One-locus QTL analysis revealed 7 QTL for type I resistance on chromosome arms 2DS, 3AS, 3BS, 3BC (centromeric), 4DL, 5AS, and 6BS, 4 QTL for type II resistance on chromosomes 2DS, 3BS, 6BS, and 7BL, and 6 QTL for resistance to kernel infection on chromosomes 1DL, 2DS, 3BS, 3BC, 4DL, and 6BS. Two-locus QTL analysis detected 8 QTL with main effects and 4 additive by additive epistatic interactions for FHB resistance and identified novel FHB resistance genes for the first time on chromosomes 1DL, 4AL, and 4DL. Neither significant QTL by environment interactions nor epistatic QTL by environment interactions were found for either type I or type II resistance. The additive effects of QTL explained most of the phenotypic variance for FHB resistance. Marker-assisted selection for the favored alleles at multiple genomic regions appears to be a promising tool to accelerate the introgression and pyramiding of different FHB resistance genes into adapted wheat genetic backgrounds.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号