首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand
Authors:Ewa B?ońska  Jaros?aw Lasota  Piotr Gruba
Institution:1.Department of Forest Soil Science, Faculty of Forestry,University of Agriculture in Krakow,Kraków,Poland
Abstract:We investigated the effects of several tree species on dehydrogenase and urease activities in soils derived from two different parent materials (glaciofluvial sand and loess) in forested areas in southern Poland. We hypothesized that coniferous forests (pine, spruce) alter the soil cation exchange capacity (CEC) and decrease soil pH and, therefore, might decrease soil enzyme activities compared with broadleaf species growing on similar soils. Eight paired plots (12 × 12 m) were established on glaciofluvial sand in pine (Pinus sylvestris) + oak (Quercus robur) and spruce (Picea abies) + pine stands, as well as on loess-derived soils: beech (Fagus sylvatica) + pine and hornbeam (Carpinus betulus) + pine stands. Each plot was a 4 × 4 m grid with 16 sampling points. In soil samples pH, soil texture, and organic carbon, nitrogen, base cation contents, dehydrogenase and urease activities were determined. On both parent materials, the soil pH was lower under coniferous species than under broadleaf species. The acidifying effect of tree species on sandy soil was in the order of spruce = pine > oak, while that on loess was pine > beech > hornbeam. Hornbeam and oak increased the soil pH and stimulated enzyme activity in the soil. The content of fine fraction enhanced potential enzyme activities in soils, thus the loess soils had greater dehydrogenase and urease activity. The results suggest that pine stores more soil organic C in association with silt increasing the pool of stabilized soil organic C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号