Interaction of nick-directed DNA mismatch repair and loop repair in human cells |
| |
Authors: | Huang Yao-Ming Chen Shee-Uan Goodman Steven D Wu Shang-Hsin Kao Jau-Tsuen Lee Chun-Nan Cheng Wern-Cherng Tsai Keh-Sung Fang Woei-horng |
| |
Affiliation: | School of Medical Technology, National Taiwan University, Taipei, Republic of China. |
| |
Abstract: | In human cells, large DNA loop heterologies are repaired through a nick-directed pathway independent of mismatch repair. However, a 3'-nick generated by bacteriophage fd gene II protein heterology is not capable of stimulating loop repair. To evaluate the possibility that a mismatch near a loop could induce both repair types in human cell extracts, we constructed and tested a set of DNA heteroduplexes, each of which contains a combination of mismatches and loops. We have demonstrated that a strand break generated by restriction endonucleases 3' to a large loop is capable of provoking and directing loop repair. The repair of 3'-heteroduplexes in human cell extracts is very similar to that of 5'-heteroduplex repair, being strand-specific and highly biased to the nicked strand. This observation suggests that the loop repair pathway possesses bidirectional repair capability similar to that of the bacterial loop repair system. We also found that a nick 5' to a coincident mismatch and loop can apparently stimulate the repair of both. In contrast, 3'-nick-directed repair of a G-G mismatch was reduced when in the vicinity of a loop (33 or 46 bp between two sites). Increasing the distance separating the G-G mismatch and loop by 325 bp restored the efficiency of repair to the level of a single base-base mismatch. This observation suggests interference between 3'-nick-directed large loop repair and conventional mismatch repair systems when a mispair is near a loop. We propose a model in which DNA repair systems avoid simultaneous repair at adjacent sites to avoid the creation of double-stranded DNA breaks. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|