首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures
Authors:Fazli Mabood  Donald L Smith
Institution:Plant Science Department, Macdonald campus of McGill University, 21,111 Lakeshore Road, Sainte Anne de Bellevue, QC, Canada H9X 3V9
Abstract:Jasmonic acid (JA) and methyl jasmonate, collectively known as jasmonates, are naturally occurring in plants; they are important signal molecules involved in induced disease resistance and mediate many physiological activities in plants. We studied the effect of JA and its methyl ester, methyl jasmonate (MeJA), on the induction of nod genes in Bradyrhizobium japonicum GG4 (USDA3) carrying a plasmid with a translational fusion between B. japonicum nodY and lacZ of Escherichia coli, and the expression activity was measured by β-galactosidase activity. Both JA and MeJA strongly induced the expression of nod genes. They have little or no deleterious effects on the growth of B. japonicum cells, while genistein (Gen) showed inhibitory effects. We further studied the effect of JA- and MeJA-induced B. japonicum on soybean nodulation and nitrogen fixation under optimal (25°C) and suboptimal (17°C) root zone temperature (RZT) conditions. B. japonicum cells were grown in liquid yeast extract mannitol media and induced with a range of Gen, JA, and MeJA concentrations, including a treatment control with no inducer added. Soybean seedlings were grown at 25 or 17°C RZT with a constant air temperature (25°C) and inoculated, at the vegetative cotyledonary stage, with various B. japonicum induction treatments. Addition of Gen or jasmonates to B. japonicum, prior to inoculation, enhanced nodulation, nitrogen fixation, and plant growth at suboptimal RZT conditions. A higher concentration of Gen was inhibitory at 25°C, while this same concentration was stimulatory at 17°C. Interestingly, pre-incubation of B. japonicum with JA and MeJA enhanced soybean nodulation and nitrogen fixation under both optimal and suboptimal RZTs. We show that jasmonates are thus a new class of signaling molecules in the B. japonicum-soybean symbiosis and that pre-induction of B. japonicum with jasmonates can be used to enhance soybean nodulation, nitrogen fixation, and early plant growth.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号