Kinetics of granulocyte phagocytosis: rate limited by cytoplasmic viscosity and constrained by cell size |
| |
Authors: | E Evans |
| |
Affiliation: | Department of Pathology, University of British Columbia, Vancouver. |
| |
Abstract: | Micromanipulation of yeast particles and blood granulocytes has been used to study the kinetics of single phagocytosis events. The ingestion process was quantitated by observation of sequential adhesion and encapsulation times. Both adherence and encapsulation times were found to increase greatly as the temperature was reduced below 37 degrees C; calcium in solution facilitated adhesion of the particle to the phagocyte but not encapsulation; both adhesion and encapsulation processes required a minimum level of plasma components (presumably complement). The general nature of these observations were confirmatory of previous studies, but this study is unique in that the specific time course of single particle ingestion was quantitated. It was immediately apparent that the phagocytosis process was 100% efficient above the threshold concentrations required for plasma and temperature, but variations in times from cell to cell indicated heterogeneity in the population. The total time for ingestion varied from as low as 2 sec/particle at 37 degrees C to above several min/particle below 15 degrees C. Encapsulation times for particles were normalized by estimates of particle surface areas to establish a specific time/unit area of particle surface: from 0.5 sec/10(-8) cm2 at 37 degrees C to greater than 8 sec/10(-8) cm2 at 15 degrees C. The temperature dependence of the encapsulation time correlated well with the temperature dependence of the "apparent" viscosity for granulocytes measured by micropipet aspiration. As such, the kinetic properties observed in these phagocytosis tests are consistent with a model that both assembly of the contractile system and the displacement of the surface by active contraction in phagocytosis are limited by viscous dissipation in the cell.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|