首页 | 本学科首页   官方微博 | 高级检索  
     


Staggered clines in a hybrid zone between two chromosome races of the harvestman Gagrellopsis nodulifera (Arachnida: Opiliones)
Authors:Gorlov I P  Tsurusaki N
Affiliation:Department of Biology, Faculty of Education and Regional Sciences, Tottori University, Tottori 680–8551, Japan;Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia;Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia E-mail:
Abstract:We analyzed a hybrid zone between two chromosome races (2n = 16 and 2n = 22) of a Japanese harvestman, Gagrellopsis nodulifera Sato and Suzuki (Arachnida: Opiliones: Phalangiidae). The hybrid zone is located in the eastern part of Tottori Prefecture, western Honshu. The width of the zone is approximately 5 to 15 km. Three independent tandem fusions/fissions seem to be the main cause of the karyotypic differences between the parental races. Ten karyotypic variants were found in the hybrid zone. They differed by numbers of diploid chromosomes and trivalents detected in meiosis. In most of the collecting sites, karyotypic heterozygotes were less common than expected. A positive correlation was found between number of trivalents in a karyotype and its deficiency rate. In some sites, the deficit of heterozygous individuals was accompanied by an excess of the intermediate homozygotes. One of the three transects across the zone was studied in detail. We found that three types of single heterozygotes (2n = 17, 2n = 19 and 2n = 21) formed a series of successive, spatially separated peaks along the transect. Two types of intermediate homozygotes (2n = 18 and 2n = 20) were also spatially separated. The most parsimonious explanation of such a structure is the staggering of clines of three tandem (or Robertsonian) fusion/fission variants that differentiate the parental races caused by selection against multiple heterozygotes. Analysis of nondisjunction in single heterozygotes demonstrated that there was a strong interindividual variation in nondisjunction rate. The mean frequency of aneuploid MII in single heterozygotes was 0.10 +/- 0.03. Crossover exchanges in some critical regions of trivalents result in abnormal chromosomal configurations: chromosomes with unequal chromatids and dicentric chromosomes. Frequency of crossover-induced chromosomal abnormalities was low in single heterozygotes (approximately equal to 4%), and was unexpectedly high in the double heterozygotes (approximately equal to 15%). Selection against karyotypic heterozygotes is considered as a main evolutionary force responsible for the structuring of the hybrid zone. A positive association between diploid chromosome number and altitude was found. The race 2n = 16 tended to occupy lower altitudes than the 2n = 22 parental race. Differences in ecological preferences may be a result of previous adaptations to different environments in allopatry. A hypothesis concerning the origin and evolution of the hybrid zone is proposed.
Keywords:Chiasma frequency    clines    harvestmen    hybrid zone    population cytogenetics    tandem fusion/fission
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号