首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decomposition of sugarcane bagasse with lignocellulose-derived thermotolerant and thermoresistant Penicillia and Aspergilli
Institution:1. Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand;2. Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand;3. National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;4. Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand;1. Excellence Centre for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;2. Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphang Sean, Nakorn Pathom, 73140, Thailand;3. Institute of Marine Science, Burapha University, Bangsaen, Chon Buri, 20131, Thailand;4. Ocean School, Yantai University, Qingquan Avenue, Yantai, 264005, Yantai, China;1. Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;2. Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;3. Bacteriology and Mycology Section, National Institute of Animal Health, Bangkok 10900, Thailand;1. Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;2. Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan;3. Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan;4. Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan;1. University of São Paulo, “Luiz de Queiroz” College of Agriculture, 11 Pádua Dias Avenue, Piracicaba, SP, 13418-900, Brazil;2. University of São Paulo, Center for Nuclear Energy in Agriculture, 303 Centenário Avenue, Piracicaba, SP, 13400-970, Brazil;3. Federal Institute Goiano ? Campus Posse, Correntina St., 824, Posse, GO, 73900-000, Brazil;1. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China;2. Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China;3. Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China;1. Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India;2. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China;3. Department of Biotechnology, Amicable Knowledge Solution University, Satna, India;4. Academy of Scientific and Innovative Research (AcSIR), India
Abstract:To promote the decomposition of sugarcane bagasse (SCB) for conversion into value-added products and to reduce waste, the capability of fungal mixes (FMs) to degrade SCB was examined. A total of 169 isolates from SCB and non-SCB were categorized as thermotolerant and thermoresistant. Thirty-six fungal candidates were screened for the presence of polyphenol oxidase, endoglucanase (EDN) and xylanase (XLN) activities, and EDN and XLN activities were quantitated. Five identified isolates (Aspergillus flavus AG10; Aspergillus niger AG68 & NB23; and Penicillium citrinum AG93 & AG140) were selected as the best enzyme producers, and 15 moderately to highly xylolytic, cellulolytic and ligninolytic isolates were added to construct FMs. Using a Taguchi design, the top ten reducing sugar-producing FMs (no. 12 showed the maximum amount of reducing sugar, at 2.11 mg g?1, followed by no. 7, 15, 2, 16, 11, 13, 6, 4, & 8) were selected as potential agents for decomposition durations of 1, 2 and 3 months. The maximum decrease in SCB materials compared with the control was generated by FM 6 (9.08% cellulose reduction); FM 13 (21.03% hemicellulose reduction); and FM 16 (9.21% lignin reduction). These results indicate the potential use of SCB as a substrate for synergistic FMs. These FMs could be applied to the large-scale composting of SCB and other related agricultural residues, thus improving the biological pretreatment of lignocellulose.
Keywords:Biodegradation  Fungal consortium  Sugarcane bagasse residues  Thermotolerant/thermoresistant fungi  CL"}  {"#name":"keyword"  "$":{"id":"kwrd0045"}  "$$":[{"#name":"text"  "_":"cellulose  CLL"}  {"#name":"keyword"  "$":{"id":"kwrd0055"}  "$$":[{"#name":"text"  "_":"cellulase  CMC"}  {"#name":"keyword"  "$":{"id":"kwrd0065"}  "$$":[{"#name":"text"  "_":"carboxymethylcellulose  CMCase"}  {"#name":"keyword"  "$":{"id":"kwrd0075"}  "$$":[{"#name":"text"  "_":"carboxymethylcellulases  EDN"}  {"#name":"keyword"  "$":{"id":"kwrd0085"}  "$$":[{"#name":"text"  "_":"endoglucanase  HMCL"}  {"#name":"keyword"  "$":{"id":"kwrd0095"}  "$$":[{"#name":"text"  "_":"hemicellulose  LN"}  {"#name":"keyword"  "$":{"id":"kwrd0105"}  "$$":[{"#name":"text"  "_":"lignin  LR"}  {"#name":"keyword"  "$":{"id":"kwrd0115"}  "$$":[{"#name":"text"  "_":"lignocellulosic residue  ME"}  {"#name":"keyword"  "$":{"id":"kwrd0125"}  "$$":[{"#name":"text"  "_":"mesophilic isolates  PPO"}  {"#name":"keyword"  "$":{"id":"kwrd0135"}  "$$":[{"#name":"text"  "_":"polyphenol oxidase  SCB"}  {"#name":"keyword"  "$":{"id":"kwrd0145"}  "$$":[{"#name":"text"  "_":"sugarcane bagasse  XLN"}  {"#name":"keyword"  "$":{"id":"kwrd0155"}  "$$":[{"#name":"text"  "_":"xylanase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号