首页 | 本学科首页   官方微博 | 高级检索  
     


Unconventional Functions for Clathrin,ESCRTs, and Other Endocytic Regulators in the Cytoskeleton,Cell Cycle,Nucleus, and Beyond: Links to Human Disease
Authors:Frances M. Brodsky  R. Thomas Sosa  Joel A. Ybe  Theresa J. O’Halloran
Affiliation:1.Department of Bioengineering and Therapeutic Sciences, Departments of Pharmaceutical Chemistry and Microbiology and Immunology, The G.W. Hooper Foundation, University of California, San Francisco, San Francisco, California 94143-0552;2.Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095;3.Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
Abstract:The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.The discovery and characterization of clathrin (Pearse 1975) initiated molecular definition of the many endocytosis regulators described in this collection, which mediate the clathrin-dependent and -independent pathways for membrane internalization (see Kirchhausen et al. 2014; Mayor et al. 2014; Merrifield and Kaksonen 2014). In accompanying reviews, we have seen how these endocytic pathways influence nutrition and metabolism (see Antonescu et al. 2014), signal transduction (see Bökel and Brand 2014; Di Fiore and von Zastrow 2014), neuronal function (see Morgan et al. 2013; Cosker and Segal 2014), infection and immunity (see ten Broeke et al. 2013; Cossart and Helenius 2014), tissue polarity and development (see Eaton and Martin-Belmonte 2014; Gonzalez-Gaitan and Jülicher 2014), and migration and metastasis (see Mellman and Yarden 2013). Recently, it has been established that some endocytic regulators have molecular properties that expand their functions beyond endocytosis. These include molecular interactions that affect the microtubule and actin cytoskeletons, nuclear translocation that influences gene regulation, and the formation of membrane-associated scaffolds that serve as signaling and sorting platforms. Through these diverse nonendocytic functions, endocytosis regulators play additional roles in cell division, pathogen infection, cell adhesion, and oncogenesis. In this article, we review the nonconventional behavior of endocytic regulators, first discussing the molecular properties that enable their moonlighting functions and then discussing the cellular processes and disease states that are influenced by these functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号