Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers |
| |
Authors: | Brian S. Tseng Christine E. Kasper V. Reggie Edgerton |
| |
Affiliation: | 1. Department of Physiological Science, University of California, 90024, Los Angeles, CA, USA 3. School of Nursing, 10833 Le Conte Ave., 90024-6918, Los Angeles, CA, USA
|
| |
Abstract: | The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 ± 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabelled with fast and slow myosin heavy chain monoclonal antibodies. Mean ± S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 ± 69 vs. 34 ± 21 x 10 3µm 3) than fast and slow soleus fibers (40 ± 20 vs. 30 ± 14 x 10 3µm 3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (<70 µm) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (>70 µm) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 ± 51 vs. 55 ± 22 and 44 ± 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|