A cascading structure and training method for multilayer neural networks |
| |
Authors: | Li Y Rad A B |
| |
Affiliation: | Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon. |
| |
Abstract: | A new structure and training method for multilayer neural networks is presented. The proposed method is based on cascade training of subnetworks and optimizing weights layer by layer. The training procedure is completed in two steps. First, a subnetwork, m inputs and n outputs as the style of training samples, is trained using the training samples. Secondly the outputs of the subnetwork is taken as the inputs and the outputs of the training sample as the desired outputs, another subnetwork with n inputs and n outputs is trained. Finally the two trained subnetworks are connected and a trained multilayer neural networks is created. The numerical simulation results based on both linear least squares back-propagation (LSB) and traditional back-propagation (BP) algorithm have demonstrated the efficiency of the proposed method. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|