首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of E. coli chaperones on the solubility of human receptors in an in vitro expression system
Authors:Sumiyo Endo  Yusuke Tomimoto  Hiroyuki Shimizu  Yoshitaka Taniguchi  Takuo Onizuka
Institution:(1) Biological Science Laboratories, Toray Research Center Inc., 1111 Tebiro, Kamakura, 248-8555 Kanagawa, Japan
Abstract:The implementation of efficient technologies for the production of recombinant mammalian membrane receptors is an outstanding challenge in understanding receptor-ligand actions and the development of therapeutic antibodies. In order to improve the solubility of recombinant extracellular domains of human membrane receptors expressed in Escherichia coli, proteins were synthesized by an E. coli in vitro translation system supplemented with bacterial molecular chaperones, such as GroEL-GroES (GroEL/ES), Trigger factor (TF), a DnaK-DnaJ-GrpE chaperone system (DnaKJE), and/or a heat shock protein Hsp100, ClpB. The following three proteins that are prone to aggregation were examined: the extracellular domain (ECD) or the second immunoglobulin-like domain (IgII) of the human neurotrophin receptor TrkC (TrkC-ECD and TrkC-IgII), and the C-type lectin carbohydrate recognition domain of the human asialoglycoprotein receptor (ASGPR HI CRD). The cooperative chaperone system including GroEL/ES, DnaKJE and ClpB had a marked effect on the solubility of TrkC-ECD and TrkC-IgII, and the GroEL/ES-DnaKJE-TF chaperone system was more effective for TrkC-IgII. The GroEL/ES-DnaKJE-TF chaperone network increased the yield of soluble ASGPR HI CRD. The present findings demonstrate that E. coli molecular chaperones are useful in improving the yield of soluble recombinant extracellular domains of human membrane receptors in an E. coli expression system.
Keywords:E  coli            in vitro  chaperones  GroEL/ES  DnaKJE  TF  ClpB  solubility
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号