首页 | 本学科首页   官方微博 | 高级检索  
     


THE MECHANISMS OF FLUORIDE TOXICITY AND FLUORIDE RESISTANCE IN SYNECHOCOCCUS LEOPOLIENSIS (CYANOPHYCEAE)1
Authors:Brian E. Nichol  Kenneth Budd  Gerald R. Palmer  J. Duncan MacArthur
Abstract:Fluoride was supplied as dissolved NaF at concentrations ranging from 0.26 to 7.9 mM (5–150 ppm) to three freshwater microalgae: Synechococcus leopoliensis (Racib.) Komarek (Cyanophyta), Oscillatoria limnetica Lemmermann (Cyanophyta) and Chlorella pyrenoidosa Chick (Chlorophyta). Growth of C. pyrenoidosa was unaffected by fluoride, and uptake of fluoride by this organism was not detectable. Growth of the cyanophytes was temporarily inhibited by NaF. The duration of this growth lag increased markedly as the pH was lowered at constant external fluoride concentration. In S. leopoliensis, fluoride uptake and inhibition of photosynthesis by NaF increased in the same way as did the growth lag in response to pH. Growth-inhibitory NaF treatments decreased the ATP level in cells of S. leopoliensis by 75% and also abolished phosphate uptake. Cells of S. leopoliensis in which fluoride-resistance was induced by prior growth in non-growth-inhibitory levels of NaF accumulated much less fluoride than did normal (“sensitive”) cells, and also did not respond to fluride by reduction of the ATP pool. It is suggested (1) that fluoride enters sensitive cells of S. leopoliensis principally as undissociated HF; (2) that its major inhibitory effect in these cells is the reduction in cellular ATP; (3)that fluoride-resistant cells accumulate less fluoride by developing incresed permeability to the fluoride anion.
Keywords:acidification  bluegreen algae  Cyanophyta  fluoride  phytoplankton  tolerance  toxicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号