首页 | 本学科首页   官方微博 | 高级检索  
     


Hyaluronic acid: molecular conformations and interactions in two sodium salts.
Authors:J M Guss  D W Hukins  P J Smith  W T Winter  S Arnott
Affiliation:Department of Biological Sciences Purdue University West Lafayette, Ind. 47907, U.S.A.;Unilever Research, Colworth/Welwyn Laboratory Colworth House, Sharnbrook Bedford MK44 1LQ, England
Abstract:
A detailed structure for the tetragonal form (a = b = 0.989 nm, c, fibre axis, = 3.394 nm) of sodium hyaluronate has been obtained by analysing X-ray fibre diffraction data using new molecular modelling techniques. Two polysaccharide chains pass through each unit cell, one at the corner and one at the centre. The chains are anti-parallel to one another. Each chain is a left-handed, 4-fold helix of disaccharide units. There are intramolecular hydrogen bonds stabilising each glycosidic linkage. Octahedrally co-ordinated sodium ions link, by O … Na+ … O bridges, neighbouring polysaccharide chains that are further linked by hydrogen bonds. No double-helix model (as originally proposed for this structure) has been found to be free of unacceptable non-bonded contacts or to fit the diffraction intensities as closely.The tetragonal form, which is stable at zero relative humidity, contains no detectable water molecules. At higher relative humidities a related orthorhombic form is observed in which only the a dimension of the lattice is different (a = 1.153 nm, b = 0.989 nm, c = 3.386 nm). In this form the hyaluronate helix is 2-fold with tetrasaccharide units conformationally similar to the 4-fold helix of the tetragonal form. The Na+ … O binding and hydrogen bonds lost on expansion of the tetragonal lattice are all replaced in the orthorhombic structure by bridges through water molecules, four of which associated with each tetrasaccharide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号