Hyaluronic acid: molecular conformations and interactions in two sodium salts. |
| |
Authors: | J M Guss D W Hukins P J Smith W T Winter S Arnott |
| |
Affiliation: | Department of Biological Sciences Purdue University West Lafayette, Ind. 47907, U.S.A.;Unilever Research, Colworth/Welwyn Laboratory Colworth House, Sharnbrook Bedford MK44 1LQ, England |
| |
Abstract: | ![]() A detailed structure for the tetragonal form (a = b = 0.989 nm, c, fibre axis, = 3.394 nm) of sodium hyaluronate has been obtained by analysing X-ray fibre diffraction data using new molecular modelling techniques. Two polysaccharide chains pass through each unit cell, one at the corner and one at the centre. The chains are anti-parallel to one another. Each chain is a left-handed, 4-fold helix of disaccharide units. There are intramolecular hydrogen bonds stabilising each glycosidic linkage. Octahedrally co-ordinated sodium ions link, by O … Na+ … O bridges, neighbouring polysaccharide chains that are further linked by hydrogen bonds. No double-helix model (as originally proposed for this structure) has been found to be free of unacceptable non-bonded contacts or to fit the diffraction intensities as closely.The tetragonal form, which is stable at zero relative humidity, contains no detectable water molecules. At higher relative humidities a related orthorhombic form is observed in which only the a dimension of the lattice is different (a = 1.153 nm, b = 0.989 nm, c = 3.386 nm). In this form the hyaluronate helix is 2-fold with tetrasaccharide units conformationally similar to the 4-fold helix of the tetragonal form. The Na+ … O binding and hydrogen bonds lost on expansion of the tetragonal lattice are all replaced in the orthorhombic structure by bridges through water molecules, four of which associated with each tetrasaccharide. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|