首页 | 本学科首页   官方微博 | 高级检索  
     


Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages
Authors:Morita Shin-Ya  Kawabe Misa  Sakurai Atsushi  Okuhira Keiichirou  Vertut-Doï Aline  Nakano Minoru  Handa Tetsurou
Affiliation:Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
Abstract:Arterial wall sphingomyelinase (SMase) has been proposed to be involved in atherogenesis. SMase modification of lipoproteins has been shown to occur in atherosclerotic lesions and to facilitate their uptake by macrophages and foam cell formation. To investigate the mechanism of macrophage uptake enhanced by SMase, we prepared lipid emulsions containing sphingomyelin (SM) or ceramide (CER) as model particles of lipoproteins. SMase remarkably increased the uptake of SM-containing emulsions by J774 macrophages without apolipoproteins. The emulsion uptake was negatively correlated with the degree of particle aggregation by pretreatment with SMase, whereas the uptake of CER-containing emulsions was significantly larger than SM-containing emulsions, indicating that enhancement of uptake is due to the generation of CER molecules in particles but not to the aggregation by SMase. Heparan sulfate proteoglycans (HSPGs) and low density lipoprotein receptor-related protein (LRP) were crucial for CER-enhanced emulsion uptake, because heparin or lactoferrin inhibited the emulsion uptake. Confocal microscopy also showed that SMase promoted both binding and internalization of emulsions by J774 macrophages, which were almost abolished by lactoferrin. Apolipoprotein E further increased the uptake of CER-containing emulsions compared with SM-containing emulsions. These findings suggest the generation of CER in lipoproteins by SMase facilitates the macrophage uptake via HSPG and LRP pathways and plays a crucial role in foam cell formation. Thus, CER may act as an important atherogenic molecule.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号