首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyclic nucleotide-gated channel activation is not required for activity-dependent labeling of zebrafish olfactory receptor neurons by amino acids
Authors:Michel W C
Institution:University of Utah School of Medicine, Department of Physiology, Salt Lake City, UT 84108, USA.
Abstract:The olfactory epithelium of fish is heterogeneous both with respect to the types of receptor cells (ORNs) present and the families of odorant receptors expressed in these cells. As a consequence of this diversity, the transduction cascade(s) activated by odorants has yet to be unambiguously established. In the current study, electrophysiological and activity-dependent labeling techniques were used to assess the role of the cyclic nucleotide-gated channel in zebrafish olfactory transduction. Both amino acid and bile salt odorants elicited robust electrophysiological responses, however, activity-dependent labeling of ORNs could be stimulated only by the amino acid odorants. An adenylate cyclase (AC) activator (forskolin) and a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, IBMX) also elicited robust electrophysiological responses; generally larger than the responses elicited by either the amino acid or bile salt odorants. However, neither forskolin alone or a mixture of forskolin and IBMX stimulated activity-dependent labeling. Bathing the olfactory epithelium with forskolin, which presumably increased the intracellular concentration of cAMP, reduced the responses to bile salt odorants to a significantly greater extent than amino acid odorants. Collectively, these findings suggest that the transduction of amino acid input does not rely primarily on cyclic nucleotide-gated (CNG) channel activation and that CNG channel activation may be required for the transduction of bile salt input. Copyright Copyright 1999 S. Karger AG, Basel
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号