首页 | 本学科首页   官方微博 | 高级检索  
     


Human Telomeres Are Hypersensitive to UV-Induced DNA Damage and Refractory to Repair
Authors:Patrick J. Rochette  Douglas E. Brash
Affiliation:1.Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America;2.Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America;3.Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America;4.Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America;Stanford University School of Medicine, United States of America
Abstract:
Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere''s own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5′TTAGGG/CCCTAA3′) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号