首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2
Authors:Supun M. Bakmiwewa  Amos A. Fatokun  Anh Tran  Richard J. Payne  Nicholas H. Hunt  Helen J. Ball
Affiliation:1. Molecular Immunopathology Unit, Discipline of Pathology, School of Medical Sciences, The University of Sydney, NSW 2006, Australia;2. Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;3. School of Chemistry, The University of Sydney, NSW 2006, Australia
Abstract:The kynurenine pathway is responsible for the breakdown of the majority of the essential amino acid, tryptophan (Trp). The first and rate-limiting step of the kynurenine pathway can be independently catalysed by tryptophan 2,3-dioxygenase (Tdo2), indoleamine 2,3-dioxygenase 1 (Ido1) or indoleamine 2,3-dioxygenase 2 (Ido2). Tdo2 or Ido1 enzymatic activity has been implicated in a number of actions of the kynurenine pathway, including immune evasion by tumors. IDO2 is expressed in several human pancreatic cancer cell lines, suggesting it also may play a role in tumorigenesis. Although Ido2 was originally suggested to be a target of the chemotherapeutic agent dextro-1-methyl-tryptophan, subsequent studies suggest this compound does not inhibit Ido2 activity. The development of selective Ido2 inhibitors could provide valuable tools for investigating its activity in tumor development and normal physiology. In this study, a library of Food and Drug Administration-approved drugs was screened for inhibition of mouse Ido2 enzymatic activity. A number of candidates were identified and IC50 values of each compound for Ido1 and Ido2 were estimated. The Ido2 inhibitors were also tested for inhibition of Tdo2 activity. Our results showed that compounds from a class of drugs used to inhibit proton pumps were the most potent and selective Ido2 inhibitors identified in the library screen. These included tenatoprazole, which exhibited an IC50 value of 1.8 μM for Ido2 with no inhibition of Ido1 or Tdo2 activity detected at a concentration of 100 μM tenatoprazole. These highly-selective Ido2 inhibitors will be useful for defining the distinct biological roles of the three Trp-catabolizing enzymes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号