首页 | 本学科首页   官方微博 | 高级检索  
     


Coordinate regulation of cholesterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A synthase but not 3-hydroxy-3-methylglutaryl coenzyme A reductase in C-6 glia
Authors:J J Volpe  K A Obert
Affiliation:Departments of Pediatrics, Neurology, and Biological Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110 U.S.A.
Abstract:
The effects on cholesterol biosynthesis of growth of cultured C-6 glial cells in serumfree medium ± supplementation with linoleic or linolenic acid were studied. Markedly higher activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) were observed in cells grown in linoleate- or linolenate-supplemented versus nonsupplemented medium. After 48 h HMG-CoA reductase activities were two-and four-fold higher in cells supplemented with 20 and 100 μm linoleate, respectively. The increase in activity became apparent after 24 h and was marked after 48 h. Rates of incorporation of [14C]acetate or 3H2O into sterols did not reflect the changes in reductase activity. Thus, in cells supplemented with 50 μm linoleate for 24 and 48 h rates of incorporation of [14C]acetate were 75–80% lower than rates in nonsupplemented cells. This difference resulted because over the first 24 h of the experiment a fivefold increase in the rate of sterol synthesis occurred in the nonsupplemented cells, whereas essentially no change occurred in the linoleate-supplemented cells; little further change occurred between 24 and 48 h in the nonsupplemented and the linoleate-supplemented cells. That the difference in sterol synthesis under these experimental conditions could be mediated at the level of HMG-CoA synthase (EC 4.1.3.5) was suggested by two series of findings, i.e., first, similar quantitative and temporal changes in the activity of this enzyme, and, second, no change in the activity of acetoacetyl-CoA thiolase (EC 2.3.1.9) or the incorporation of [14C]mevalonate into sterols. Thus, the data suggest that HMG-CoA synthase, and not HMG-CoA reductase, may direct the rate of cholesterol biosynthesis under these conditions of serum-free growth ± supplementation with polyunsaturated fatty acid.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号