首页 | 本学科首页   官方微博 | 高级检索  
     

一类分数阶微分方程的最优控制
引用本文:司家芳,蒋威. 一类分数阶微分方程的最优控制[J]. 生物数学学报, 2011, 0(1): 17-24
作者姓名:司家芳  蒋威
作者单位:安徽大学数学科学学院,安徽合肥230039
基金项目:Supported by the National Nature Science Foundation of China(No.11071001); The Special Research Fund for the Doctoral Program of the Ministry of Education of China(20093401110001); Major Programs of Natural Science Research in Anhui Universities(KJ2010ZD02)
摘    要:主要研究了一类分数阶微分方程的最优控制问题.通过Oustaloup迭代逼近,可以将分数阶微分算子在频率域范围内进行近似.那么原先的分数阶微分方程就转换为一般的常微分方程.利用这个关系,可以得到关于分数阶微分方程的两个定理和一个引理.最后给出一个例子说明该方法的有效性.

关 键 词:分数阶微分方程  Laplace变换  最优控制

The Optimal Control for a Class of Fractional Differential Equations
SI Jia-Fang JIANG Wei. The Optimal Control for a Class of Fractional Differential Equations[J]. Journal of Biomathematics, 2011, 0(1): 17-24
Authors:SI Jia-Fang JIANG Wei
Affiliation:SI Jia-Fang JIANG Wei (School of Mathematical Science,Anhui University,Hefei Anhui 230039 China)
Abstract:This paper studies the optimal control for a class of fractional differential equations(FDEs).By using Oustaloup's Recursive Approximation,the fractional derivative operator can be approximated in frequency-domain.Then the original FDE is reformulated to an ordinary differential equation(ODE).Using this relation,two theorems and a lemma on optimal control of FDEs are obtained.Finally,a illustrative example is given.
Keywords:Fractional differential equations  Laplace transformation  Optimal control
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号