Abstract: | A 145-bp DNA sequence, cloned from Escherichia coli, was reconstituted into nucleosome core particles by a number of methods. The behaviour of the resulting complex upon sucrose gradient sedimentation and nucleoprotein gel electrophoresis closely resembled that of control bulk nucleosome core particles. DNase I digestion of the 32P-end-labelled complex revealed the 10-bp periodicity of cleavages expected for DNA bound on a histone surface. The narrow cleavage sites observed (1 bp wide) imply that the sequence occupies a single preferred position on the nucleosome core, accurate to the level of single base pairs. By relating the digestion pattern observed to the pattern of site protection found for random sequence nucleosomes, the DNA position was found to be offset by 17 bp from that in the normal core particle. A number of experiments argue against the involvement of length or end effects and suggest that it is some feature of the DNA sequence itself that determines this precise positioning of DNA on the nucleosome. |