首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sec35p,a Novel Peripheral Membrane Protein,Is Required for ER to Golgi Vesicle Docking
Authors:Susan M VanRheenen  Xiaochun Cao  Vladimir V Lupashin  Charles Barlowe  M Gerard Waters
Institution:*Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; and Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
Abstract:SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (Wuestehube et al., 1996. Genetics. 142:393–406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE–associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.Protein transport through the secretory pathway occurs via transport vesicles under the direction of a large set of protein components (Rothman, 1994). The process can be divided into three stages: (a) vesicle budding, (b) vesicle docking, and (c) membrane fusion, with distinct sets of proteins mediating each phase. The budding step involves recruitment of coat proteins to the membrane and culminates with the release of coated vesicles (Schekman and Orci, 1996). The docking reaction is likely to require a set of integral membrane proteins on the vesicle and target membranes, termed v-SNAREs1 and t-SNAREs (vesicle- and target membrane-soluble N-ethylmaleimide–sensitive fusion protein NSF] attachment protein SNAP] receptors, respectively), that are thought to confer specificity through their pair-wise interactions (Söllner et al., 1993b ). Small GTP-binding proteins of the rab family also assist in the docking process (Ferro-Novick and Novick, 1993), but their precise function is not known. The fusion step ensues after docking and results in the delivery of the vesicular cargo to the next compartment in the secretory pathway.Vesicular transport from the ER to the Golgi apparatus in the yeast Saccharomyces cerevisiae has been extensively characterized. Transport vesicle budding involves the assembly of the COPII coat, composed of the Sec13p/Sec31p (Pryer et al., 1993; Salama et al., 1993; Barlowe et al., 1994) and Sec23p/Sec24p heterodimers (Hicke and Schekman, 1989; Hicke et al., 1992), under the direction of an integral membrane protein, Sec12p (Nakano et al., 1988; Barlowe and Schekman, 1993), a small GTPase, Sar1p (Nakano and Muramatsu, 1989), and a multidomain protein, Sec16p (Espenshade et al., 1995; Shaywitz et al., 1997). Docking is thought to require a tethering event mediated by Uso1p (Cao et al., 1998), the yeast homologue of mammalian p115 (Barroso et al., 1995; Sapperstein et al., 1995), followed by or concurrent with the interaction of a set of ER to Golgi v-SNAREs, Bet1p, Bos1p, Sec22p (Newman and Ferro-Novick, 1987; Newman et al., 1990; Ossig et al., 1991; Shim et al., 1991; Søgaard et al., 1994) and perhaps Ykt6p (Søgaard et al., 1994; McNew et al., 1997), with the cognate t-SNARE on the Golgi, Sed5p (Hardwick and Pelham, 1992). For some time it was thought that fusion may be initiated by disassembly of the v/t-SNARE complex (Söllner et al., 1993a ) by yeast SNAP, Sec17p, (Griff et al., 1992) and NSF, Sec18p (Eakle et al., 1988; Wilson et al., 1989). However, this concept has been challenged by studies with a yeast system that reconstitutes homotypic vacuolar fusion, which suggests the action of Sec18p is before vesicle docking (Mayer et al., 1996; Mayer and Wickner, 1997). In addition, a prefusion role for NSF has been supported by the recent finding that liposomes bearing SNAREs alone can fuse in the absence of NSF (Weber et al., 1998).Several proteins involved in the regulation of yeast ER to Golgi v/t-SNARE complex assembly have been identified, including Ypt1p, Uso1p, and Sly1p. Ypt1p is a member of the rab family of small GTP-binding proteins that have been identified as important components of almost every stage in the secretory pathway (Ferro-Novick and Novick, 1993). Hydrolysis of GTP by rab-like proteins has been hypothesized to provide the regulatory switch that controls the fidelity of vesicular transport (Bourne, 1988). A second protein, Uso1p (Nakajima et al., 1991), appears to function in the same pathway as Ypt1p (Sapperstein et al., 1996), and both proteins have been demonstrated to be essential for SNARE complex assembly (Søgaard et al., 1994; Sapperstein et al., 1996; Lupashin and Waters, 1997). The third protein, Sly1p, is associated with the t-SNARE Sed5p (Søgaard et al., 1994). SLY1 is an essential gene in yeast (Dascher et al., 1991; Ossig et al., 1991), and Sly1p is required for ER to Golgi transport in vitro (Lupashin et al., 1996) and in vivo (Ossig et al., 1991). However, several lines of evidence, particularly from Sly1p homologues in other organisms, indicate that Sly1p may also function as a negative regulator of v/t-SNARE complex assembly, perhaps by preventing the association of the v- and t-SNAREs (Hosono et al., 1992; Pevsner et al., 1994; Schulze et al., 1994). A dominant allele of SLY1, termed SLY1-20, is capable of suppressing mutations in YPT1 and USO1, including complete deletions (Dascher et al., 1991; Sapperstein et al., 1996). Thus, in the presence of Sly1-20p, two components required for SNARE complex assembly are no longer essential. We have proposed a model (Sapperstein et al., 1996; Lupashin and Waters, 1997) in which Ypt1p and Uso1p function to relieve the inhibitory action of Sly1p on SNARE complex assembly. In this model Sly1-20p can be thought of as a noninhibitory form of SLY1 that renders Ypt1p and Uso1p superfluous.We believe that the ability of SLY1-20 to suppress defects in upstream docking regulators can be used to identify additional components involved in the regulation of vesicular docking. We have undertaken a genetic screen (to be presented elsewhere) to isolate novel components in this pathway which, when mutated, depend upon Sly1-20p for viability. In the course of this work, we discovered that two recently identified mutants, sec34 and sec35, can be suppressed by SLY1-20 and thus satisfy the criterion of our screen. These mutants were isolated in a novel screen to identify components involved in transport at any step between the ER and the trans-Golgi network (i.e., the Kex2p compartment) in yeast (Wuestehube et al., 1996). Both sec34 and sec35 accumulate the core-glycosylated form of secretory proteins at the nonpermissive temperature, indicating a block in ER to Golgi transport. Furthermore, electron microscopy indicated that both sec34 and sec35 accumulate numerous vesicles upon shift to the restrictive temperature (Wuestehube et al., 1996), a hallmark of genes whose protein products are involved in the docking or fusion phase of transport (Kaiser and Schekman, 1990). In this report we describe the cloning of SEC35 and analysis of its genetic interactions with other secretory genes. Strong genetic interaction between SEC35 and SLY1, YPT1, and USO1 suggests that Sec35p may function in vesicle docking. To test this possibility, we devised an in vitro transport assay that depends on the addition of purified Sec35p and Uso1p. Vesicles synthesized in the absence of functional Sec35p do not fuse with the Golgi compartment and remain as freely diffusible intermediates. Upon addition of Sec35p and Uso1p, vesicles dock to the Golgi and proceed to membrane fusion. Requirements for Sec35p at the vesicle docking step correlates our genetic experiments with the biochemically distinguishable steps of vesicle docking and membrane fusion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号