首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of neuronal locus specificity in Xenopus retinal ganglion cells after surgical eye transection after fusion of whole eyes
Authors:R K Hunt  M Jacobson
Institution:1. Anatomy Department and the Institute of Neurological Sciences, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 USA;2. Thomas C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 USA
Abstract:A developmental program is established in the stage 28–32 optic cup of Xenopus embryos, which specifies the permanent AP and DV reference axes for positional information in the retina, and thereby determines the pattern of spatial deployment of ganglion cell locus specificities subserving assembly of retinotopically organized connections in the tectum. This developmental program has previously proved unmodifiable in intact eye primordia submitted to a variety of rotation, transplantation, and tissue culture conditions. Here we report that the program can be modified by surgical transection of stage 32 eye primordia (with subsequent fusion of the disconnected halves to reconstitute a whole eye) and by fusion of whole stage 38 eyes, although most of the transected eyes did develop normal visuotectal projections. The remaining vertically transected eyes, and all eyes formed when a left and right stage 38 eye fused along apposed temporal edges, developed “double-nasal compound” projections to the tectum: the nasal and temporal halves of the adult retina each projected to the entire tectum, and each tectal locus was driven from two stimulus positions symmetrically disposed about the vertical meridian. The remaining horizontally transected eyes, and all eyes formed when a left and right stage 38 eye fused along apposed dorsal edges, developed “double-ventral compound” projections to the tectum: the dorsal and ventral halves of the adult retina each projected to the entire tectum, and each tectal locus was driven from two stimulus positions symmetrically disposed about the horizontal meridian. The results are considered in terms of (1) the kinds of cellular processes that could mediate the observed modifications in the original developmental program; (2) the nature and stability of the program; and (3) the general suitability of eye fragment-fusion experiments for analysis of the assembly of retinotectal connections.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号