首页 | 本学科首页   官方微博 | 高级检索  
   检索      


YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis
Authors:Szurmant Hendrik  Nelson Kristine  Kim Eun-Ja  Perego Marta  Hoch James A
Institution:Division of Cellular Biology, Mail code MEM-116, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Abstract:Of the numerous two-component signal transduction systems found in bacteria, only a very few have proven to be essential for cell viability. Among these is the YycF (response regulator)-YycG (histidine kinase) system, which is highly conserved in and specific to the low-G+C content gram-positive bacteria. Given the pathogenic nature of several members of this class of bacteria, the YycF-YycG system has been suggested as a prime antimicrobial target. In an attempt to identify genes involved in regulation of this two-component system, a transposon mutagenesis study was designed to identify suppressors of a temperature-sensitive YycF mutant in Bacillus subtilis. Suppressors could be identified, and the prime target was the yycH gene located adjacent to yycG and within the same operon. A lacZ reporter assay revealed that YycF-regulated gene expression was elevated in a yycH strain, whereas disruption of any of the three downstream genes within the operon, yycI, yycJ, and yycK, showed no such effect. The concentrations of both YycG and YycF, assayed immunologically, remained unchanged between the wild-type and the yycH strain as determined by immunoassay. Alkaline phosphatase fusion studies showed that YycH is located external to the cell membrane, suggesting that it acts in the regulation of the sensor domain of the YycG sensor histidine kinase. The yycH strain showed a characteristic cell wall defect consistent with the previously suggested notion that the YycF-YycG system is involved in regulating cell wall homeostasis and indicating that either up- or down-regulation of YycF activity affects this homeostatic mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号