首页 | 本学科首页   官方微博 | 高级检索  
     


Solvent isotope effects on alpha-glucosidase
Authors:O'donnell Anne H  Yao Xiaojie  Byers Larry D
Affiliation:Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
Abstract:
The solvent kinetic isotope effects (SKIE) on the yeast alpha-glucosidase-catalyzed hydrolysis of p-nitrophenyl and methyl-d-glucopyranoside were measured at 25 degrees C. With p-nitrophenyl-D-glucopyranoside (pNPG), the dependence of k(cat)/K(m) on pH (pD) revealed an unusually large (for glycohydrolases) solvent isotope effect on the pL-independent second-order rate constant, (DOD)(k(cat)/K(m)), of 1.9 (+/-0.3). The two pK(a)s characterizing the pH profile were increased in D(2)O. The shift in pK(a2) of 0.6 units is typical of acids of comparable acidity (pK(a)=6.5), but the increase in pK(a1) (=5.7) of 0.1 unit in going from H(2)O to D(2)O is unusually small. The initial velocities show substrate inhibition (K(is)/K(m) approximately 200) with a small solvent isotope effect on the inhibition constant [(DOD)K(is)=1.1 (+/-0.2)]. The solvent equilibrium isotope effects on the K(is) for the competitive inhibitors D-glucose and alpha-methyl D-glucoside are somewhat higher [(DOD)K(i)=1.5 (+/-0.1)]. Methyl glucoside is much less reactive than pNPG, with k(cat) 230 times lower and k(cat)/K(m) 5 x 10(4) times lower. The solvent isotope effect on k(cat) for this substrate [=1.11 (+/-0. 02)] is lower than that for pNPG [=1.67 (+/-0.07)], consistent with more extensive proton transfer in the transition state for the deglucosylation step than for the glucosylation step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号