首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATP-dependent Ca2+ transport in wheat root plasma membrane vesicles
Authors:Malin Olbe  Marianne Sommarin
Institution:Dept of Plant Biochemistry, Univ. of Lund, P.O.Box 7007, S-220 07 Lund, Sweden
Abstract:Plasma membrane preparations of high purity were obtained from roots of dark-grown wheat (Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. These preparations mainly contained sealed, right-side-out vesicles (ca 90% exposing the original outside out). By subjecting the preparations to 4 freeze/thaw cycles the proportion of sealed, inside-out (cytoplasmic side out) vesicles increased to ca 30%. Inside-out and right-side-out plasma membrane vesicles were then separated by partitioning the freeze/thawed plasma membranes in another aqueous polymer two-phase system. In this way, highly purified, sealed, inside-out (>60% inside-out) vesicles were isolated and subsequently used for characterization of the Ca2+ transport system in the wheat plasma membrane. The capacity for 45Ca2+ accumulation, nonlatent ATPase activity and proton pumping (the latter two markers for inside-out plasma membrane vesicles) were all enriched in the inside-out vesicle fraction as compared to the right-side-out fraction. This confirms that the ATP-binding site of the 45Ca2+ transport system, similar to the H+-ATPase, is located on the inner cytoplasmic surface of the plant plasma membrane. The 45Ca2+ uptake was MgATP-dependent with an apparent Km for ATP of 0.1 mM and a high affinity for Ca2+ Km(Ca2+/EGTA) = 3 μM]. The pH optimum was at 7.4–7.8. ATP was the preferred nucleotide substrate with ITP and GTP giving activities of 30–40% of the 45Ca2+ uptake seen with ATP. The 45Ca2+ uptake was stimulated by monovalent cations; K? and Na+ being equally efficient. Vanadate inhibited the 45Ca2+ accumulation with half-maximal inhibitions at 72, 57 and 2 μM for basal, total (with KCI) and net K+-stimulated uptake, respectively. The system was also highly sensitive to erythrosin B with half-maximal inhibition at 25 nM and total inhibition at 1μM. Our results demonstrate the presence of a primary Ca2+ transport ATPase in the plasma membrane of wheat roots. The enzyme is likely to be involved in mediating active efflux (ATP-binding sites on the cytoplasmic side) to the plant cell exterior to maintain resting levels of cytoplasmic free Ca2+ within the cell.
Keywords:Ca2+-ATPase  Ca2+ transport  inside-out vesicles  plasma membrane              Triticum aestivum            two-phase partitioning  wheat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号