首页 | 本学科首页   官方微博 | 高级检索  
     


Further studies on the bile salt induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenases in Clostridium absonum
Authors:I A Macdonald  J D Sutherland
Abstract:Optimal induction of 7 alpha- and 7 beta-hydroxysteroid dehydrogenase in 100-ml cultures grown to stationary phase was achieved by the addition of metabolizable bile salt inducers: chenodeoxycholate, 7-ketolithocholate or cholate at 2.5-3 h after inoculation. Bile salt addition prior to or after this period markedly reduced the enzyme levels induced. However, when the non-metabolizable inducers deoxycholate and 12-ketolithocholate were similarly added, no significant differences in enzyme levels were observed between addition at 2.5-3 h or at earlier times. The ability of both metabolizable and non-metabolizable bile salts to induce the enzymes fell markedly when additions were made later than approximately 3.5 h. Kinetic studies using 1-l cultures suggest that in a larger culture a somewhat earlier inducer addition period is optimal. When ranked according to the level of enzymes induced the order in decreasing induction power was: chenodeoxycholate, 7-ketolithocholate, deoxycholate, 12-ketolithocholate and cholate. Mixtures of cholate and suboptimal concentrations of deoxycholate induced the culture better than the sum of the two concentrations individually. The end product, ursodeoxycholate, was very effective in blocking the induction by chenodeoxycholate or deoxycholate. Ursocholate (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoate) was less effective. Cultures when grown for 3 h with various bile salts or none, then centrifuged and recultured for a further 3 h in fresh medium containing chenodeoxycholate, all yielded identical enzyme levels within experimental error. We conclude that exposure of the organism to bile salt inducer in the last 3 h of culture was important, while the history of the culture prior to this time was unimportant in the induction process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号