首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential Proteome and Interactome Analysis Reveal the Basis of Pleiotropy Associated With the Histidine Methyltransferase Hpm1p
Authors:Tara K Bartolec  Joshua J Hamey  Andrew Keller  Juan D Chavez  James E Bruce  MarcR Wilkins
Institution:1. Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia;2. Department of Genome Sciences, University of Washington, Seattle, Washington, USA
Abstract:The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine–lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein–protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.
Keywords:histidine methylation  ribosome  interactomics  crosslinking mass spectrometry  protein-protein interaction  BDP–NHP"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"biotin–aspartate proline–"}  {"#name":"italic"  "_":"N"}  {"#name":"__text__"  "_":"-hydroxyphthalimide  BL"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"Boca and Leek’s FDR regression method  CSM"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"cross-link spectral match  FDR"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"false discovery rate  GO"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"Gene Ontology  H243"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"histidine 243  H243Me"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"methylation of H243  HCD"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"higher-energy collision dissociation  Hpm1p"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"histidine protein methyltransferase 1  IAA"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"iodoacetamide  MS"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"mass spectrometry  NCE"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"normalized collision energy  PDB"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"Protein Data Bank  PIR"}  {"#name":"keyword"  "$":{"id":"kwrd0200"}  "$$":[{"#name":"text"  "_":"protein interaction reporter  PPI"}  {"#name":"keyword"  "$":{"id":"kwrd0210"}  "$$":[{"#name":"text"  "_":"protein–protein interaction  PTM"}  {"#name":"keyword"  "$":{"id":"kwrd0220"}  "$$":[{"#name":"text"  "_":"post-translational modification  RT"}  {"#name":"keyword"  "$":{"id":"kwrd0230"}  "$$":[{"#name":"text"  "_":"room temperature  SC"}  {"#name":"keyword"  "$":{"id":"kwrd0240"}  "$$":[{"#name":"text"  "_":"synthetic complete  SCX"}  {"#name":"keyword"  "$":{"id":"kwrd0250"}  "$$":[{"#name":"text"  "_":"strong cation exchange  SILAC"}  {"#name":"keyword"  "$":{"id":"kwrd0260"}  "$$":[{"#name":"text"  "_":"stable isotope labeling of amino acids in cell culture  UNSW"}  {"#name":"keyword"  "$":{"id":"kwrd0270"}  "$$":[{"#name":"text"  "_":"University of New South Wales  URP"}  {"#name":"keyword"  "$":{"id":"kwrd0280"}  "$$":[{"#name":"text"  "_":"unique residue pair
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号